Senin, 10 November 2014

TEORI M1. BANDUL MATEMATIS "FISIKA DASAR" S1

Teori Bandul Matematis

Bandul Matematis

bandul matematis - Gerak periode merupakan suatu gerak yang berulang pada selang waktu yang tetap. Contohnya gerak ayunan pada bandul. Dari satu massa yang brgantung pada sutas tali, kebanyakan gerak tidaklah betul-betul periodik karena pengaruh gaya gesekan yang membuang energi gerak.
Benda berayun lama akan berhenti bergetar. ini merupakan periodik teredam. Gerak dengan persamaan berupa fungsi sinus merupakan gerak harmonik sederhana.
Periode getaran yaitu T. Waktu yang diperlukan untuk satu getaran frekwensi gerak f. jumlah getaran dalam satu satuan waktu T = 1/f posisi saat dimana resultan gaya pada benda sama dengan nol adalah posisi setimbang, kedua benda mencapai titik nol (setimbang) selalu pada saat yang sama
Gaya pada partikel sebanding dengan jarak partikel dari posisi setimbang maka partikel tersebut melakukan gerak harmonik sederhana. Teori Robert hooke (1635-1703) menyatkan bahwa jika sebuah benda diubah bentuknya maka benda itu akan melawan perubahan bentuk dengan gaya yang seimbang/sebanding dengan besar deformasi, asalkan deformasi ini tidak terlalu besar, F = -kx. Dan dalam batas elastisitas gaya pada pegas adalah sebanding dengan pertambahan panjang pegas. sedangkan pertambahan panjang pegas adalah sama dengan simpangan osilasi atau getaran. F = + k ∆x
Gaya gesekan adalah sebanding dengan kecepatan benda dan mempunyai arah yang berlawanan dengan kecepatan. persamaan gerak dari suatu osilator harmonik teredam dapat diperoleh dari hukum  II Newton yaitu  F = m.a dimana F adalah jumlah dari gaya balik –kx dan gaya redam yaitu –b dx/dt, b adalah suatu tetapan positif.
Banyak benda yang berosilasi bergerak bolak-balik tidak tepat sama karena gaya gesekan melepaskan tenaga geraknya. Periode T suatu gerak harmonik adalah waktu yang dibutuhkan untuk menempuh suatu lintasan langkah dari geraknya yaitu satu putaran penuh atau satu putar frekwensi gerak adalah V = 1/T .
Satuan SI untuk frekwensi adalah putaran periodik hert. posisi pada saat tidak ada gaya netto yang bekerja pada partikel yang berosilasi adalah posisi setimbang. partikel yang mengalami gerak harmonik bergerak bolak-balik melalui titik yang tenaga potensialnya minimum (setimbang). contoh bandul berayun.
Chritian Haygens (1629-1690) menciptakan : Dalam bandul jam, tenaga dinerikan secara otomatis oleh suatu mekanisme pelepasan untuk menutupi hilangnya tenaga karena gesekan.
bandul matematis adalah salah satu matematis yangbergerak mengikuti gerak harmonik sederhana. bandul matematis merupakan benda ideal yang terdiri dari sebuah titik massa yang digantungkan pada tali ringan yang tidak bermassa. jika bandul disimpangkan dengan sudut θ dari posisi setimbangnya lalu dilepaskan maka bandul akan berayun pada bidang vertikal karena pengaruh dari gaya grafitasinya.
" berdasarkan penurunan hukum-hukum newton disebutkan bahwa periode ayunan bandul sederhana dapat di hitung sbb :

T = 2π √(l/g)
Dimana:
    T   : Periode ayunan (detik)
    l    : Panjang tali (m)
    g   : Konstanta percepatan gravitasi bumi ( m/det^2  )
Sumber : http://www.sarjanaku.com

0 komentar: